Proton in Perovskites:
content, structural distortions and dynamics
- neutron scattering study

Aneta Slodczyk¹, Philippe Colomban¹,
Daniel Lamago²,³, Gilles André², Natalie Malikova²,
Stephane Longeville², Jean-Marc Zanotti²
Olivier Lacroix⁴ and Beatrice Sala⁴

¹ LADIR UMR 7075 CNRS - UPMC, 75005 Paris, France.
² Laboratoire Léon Brillouin CNRS-CEA, CEA Saclay, 91191 Gif-sur-Yvette, France.
³ Karlsruhe Institute of Technology, IFP, 76021 Karlsruhe, Germany.
⁴ AREVA NP - UM2, Montpellier, 34095, France.
Context

perovskite ceramic

\[M(\text{Ba, Sr})B(\text{Zr, Ce, Ti})_{1-x}O_{3-\delta}\text{Ln/RE}_yH_z \]

Proton conductor in middle temperature range

Huge industrial potential: Hydrogen Economy

Complex physical-chemical behaviour ➔ many discrepancies in literature

- content of bulk protonic species
- bulk proton nature
- structural modifications
- bulk proton dynamics
Proton size: electron < H⁺ < Li⁺ ion

The physics and chemistry of proton are unique

Ph. Colomban, Proton Conductors, Cambridge University Press, 1992

acceptor covalence shell penetration (OH⁻, H₃O⁺, NH₄⁺)

weak asymmetric H-bond

strong symmetric H-bond

ionic proton

Extremely complex behaviour of Protonics
High complexity of Protonics ➦ specific methods of analysis

\[
H: \quad \sigma_{\text{incoh}} = 80.26 \text{ barns}; \quad \sigma_{\text{coh}} = 1.76 \text{ barns}
\]

- direct measurement of proton content
- local and long range proton motion, proton dynamics: QENS (meV-\(\mu\)eV)
- host structure modifications, proton location: Diffraction
- proton nature, possibility of ionic proton detection! INS

Neutron measurements should be performed on:

- good quality samples = high dense ceramics, mechanically and chemically stable in operating conditions
- in operating conditions
Samples and Experiments

high dense (97-99%) ceramics stable in operating conditions

\[(\text{Ba}, \text{Sr})\text{Zr}_{1-x}\text{Ln}_x\text{O}_{3-\delta} H_z\]

<table>
<thead>
<tr>
<th>Sample</th>
<th>Composition</th>
<th>Density (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>BaZr({0.94}\text{Ln}{0.06}\text{O}{3-\delta} H{0.005})</td>
<td>(97%) BZ(_6)</td>
<td></td>
<td>(PCT patent WO 2008/152317 A2 (18-12-2008))</td>
</tr>
<tr>
<td>SrZr({0.93}\text{Ln}{0.07}\text{O}{3-\delta} H{0.003})</td>
<td>(98%) SZ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BaZr({0.97}\text{Ln}{0.03}\text{O}{3-\delta} H{0.001})</td>
<td>(99%) BZ(_3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SrZr({0.93}\text{Ln}{0.07}\text{O}{3-\delta} H{0.004})</td>
<td>(99%) SZ</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

protonated in autoclaves at high temperature, under high H\(_2\)O vapour pressure

→ water steam electrolysis conditions

Stable electrolytes allowing hydrogen production

AREVA NP, Montpellier FRANCE
Importance of sample processing

$\text{BaZr}_{0.25}\text{In}_{0.75}\text{O}_{3-\delta}$ (cooperation Northern Univ. - Argonne Laboratory)

chemical and mechanical decomposition; premature aging

Idem other Ln-modified perovskites!
Samples and Experiments

neutron diffraction: G 41 Cold Neutron Two Axis Diffractometer PYRRHIAS
25 – 900°C

quasi-elastic neutron scattering 300 – 1200°C
1T1 Double Focusing Thermal 3 Axis Spectrometer
4F1 Cold Neutron 3 Axis Spectrometer
Time-of-flight Mibemol Spectrometer

inelastic neutron scattering: Time-of-flight Mibemol Spectrometer

neutronography

high dense (97-99%) ceramics stable in operating conditions
(Ba,Sr)Zr$_{1-x}$Ln$_x$O$_{3-\delta}$ Hz

(PCT patent WO 2008/152317 A2 (18-12-2008))

neutron diffraction

- G 41 Cold Neutron Two Axis Diffractometer PYRRHIAS
- 25 – 900°C

quasi-elastic neutron scattering

- 300 – 1200°C
- 1T1 Double Focusing Thermal 3 Axis Spectrometer
- 4F1 Cold Neutron 3 Axis Spectrometer
- Time-of-flight Mibemol Spectrometer

inelastic neutron scattering

- Time-of-flight Mibemol Spectrometer

neutronography

Samples and Experiments

high dense (97-99%) ceramics stable in operating conditions
(Ba,Sr)Zr$_{1-x}$Ln$_x$O$_{3-\delta}$ Hz

(PCT patent WO 2008/152317 A2 (18-12-2008))

- **neutron diffraction**
 - G 41 Cold Neutron Two Axis Diffractometer PYRRHIAS
 - 25 – 900°C

- **quasi-elastic neutron scattering**
 - 300 – 1200°C
 - 1T1 Double Focusing Thermal 3 Axis Spectrometer
 - 4F1 Cold Neutron 3 Axis Spectrometer
 - Time-of-flight Mibemol Spectrometer

- **inelastic neutron scattering**
 - Time-of-flight Mibemol Spectrometer

neutronography

thermogravimetric analysis (He atmosphere; Pt crucible)

IR transmission (polished ceramics ~ 150µm)

in situ Raman scattering
 - autoclave with sapphire window (20-600°C, 20 bars H$_2$O)

in situ Conductivity
 - water steam electrolyser (20-600°C, 20 bars H$_2$O)
Complexity of protonation process

Successful protonation depends on:

- a sample composition (oxygen vacancy content, A - element)
- a sample density/active surface area
- protonation conditions (time, pressure, temperature)

Quantitative and qualitative control of the protonation → differentiation between the surface and bulk protons is necessary!

Ph. Colomban, A. Slodczyk Membranes 2, 493 (2012)
Content of protonic species - differentiation between bulk and surface

- **Bulk** protonic species
- **Surface** protonic species

Energy (meV)

Intensity (arb. units)

- **HD 99%**
- **SZ**
- **TOF**

1T1 300 °C h

Q = 2.3 1/A

BZ 3-axis

Sr(Zr, Ln)O$_3$-δ

TGA

Zirconates H ~ 0.1 - 0.5 *10^{-2} mole/mole

Cerates H ~ 2 *10^{-2} mole/mole

A. Slodczyk et al. MRS Proceedings 1309 (2011)

Protonic species content

Protonic species content

neutronography

SZ (250°C/40bar/72h)
surface protonic species

Ph. Colomban, A. Slodczyk Membranes 2, 493 (2012)
What is a nature of bulk proton? - TGA and IR approach

SZ_99% \(\rightarrow\) \(500^\circ\text{C}/80\text{ bar}/5\text{ days} \rightarrow \text{bulk protons}

SZ_90% \(\rightarrow\) \(200^\circ\text{C}/15\text{ bar}/5\text{ days} \rightarrow \text{surface protonic species + traces of bulk protons}

SZ_90%: IR signature due to the surface moieties

SZ_99%: interstitial proton, free from covalent bonding

A. Slodczyk et al. MRS Proceedings 1309 (2011)

Ph. Colomban, A. Slodczyk Membranes 2, 493 (2012)

Ph. Colomban, A. Slodczyk J. Raman Spectrosc. (2012) in press
What is a nature of bulk proton? – INS approach

Ph. Colomban, A. Slodczyk
Structural modifications of host perovskite structure

Ph. Colomban & A. Slodczyk et al. Journal of the Physical Society of Japan 79 (2010) 1

Long range structural modifications in good agreement with the ionic nature of proton!

Structural modifications are proportional to the proton content

High pressure/high temperature Raman in situ autoclave

LADIR, Paris FRANCE

A. Slodczyk et al. MRS Proceedings 1385 (2012)
Proton dynamics - QENS results

BZ 3-axis

FWHM (meV) a to H dynamic contribution

Temperature (°C)

Q = 2.3 (1/A)

600°C h

75°C 97%
time H ~ 0.005

1T1 vacuum

600°C c

Q = 3.6 (1/A)

BZ_6

99%

600°C c

1T1 vacuum

MSD

SZ TOF

~450°C -600°C maximal peak broadening or maximal value of MSD

⇒ the highest local (meV) proton motion

in situ vs. ex situ

mixed H^+/O^{2-} conduction?

H^+ conduction

Temperature (°C)

Conductivity electrolyser

in situ

Raman in situ

in situ

QNS ex situ

MSD

450-550°C optimum temperature range

$\Delta E_a \Leftrightarrow$ phase transitions \Leftrightarrow local proton dynamics

Ph. Colomban & A. Slodczyk et al.
Journal of the Physical Society of Japan 79 (2010) 1
Conclusion

- physics and chemistry of Protonics are complex

- differentiation between bulk and surface protonic species is necessary to go further in comprehension of protonic perovskites: « bulk proton doping » : ~ 0.5 \(10^{-2}\) mole/mole

- the bulk protons posses the covalent-bond free nature

- bulk protons induce long range order structural modifications weak enough to guaranty chemical and mechanical stability

- proton dynamics are complex, correlated to the structural modifications and activation energy changes

Acknowledgements:

ANR PAN-H CELEVA and H-PAC HELEVA
AREVA-NP, IEM, LISE, SCT, ENS Mines ST-Etienne
What is a nature of bulk proton? - INS approach

interstitial proton, free from hydrogen bonding

ionic proton?

gas of proton?
Protonic species content - QENS

3-axis

![Graph 3-axis](Graph_3-axis.png)

TOF

![Graph TOF](Graph_TOF.png)

\[\sum \sigma_{\text{incoh}}(AB_{1-x}Ln_xO_{3-\delta}H_z) \approx \frac{I_{\text{protonated}}}{I_{\text{deprotonated}}} \]

\[\text{BaZr}_{0.9}\text{Ln}_{0.1}\text{O}_{3-\delta}\text{H}_z \]

\[\text{SrZr}_{0.9}\text{Ln}_{0.1}\text{O}_{3-\delta}\text{H}_z \]
Structural studies of host perovskite structure

- thermal and chemical stability
- conductivity mechanism

Reliable diffraction results = ordered materials

Proton conducting perovskite host structure + Ln/RE substitution ($V_O^{\cdot\cdot}$) + proton doping

\Rightarrow non-stoichiometry, local disorder

CJ Howard et al.
Proton dynamics - 3 axis results

- 600°C h
- 750°C BZ_6
- BZ_3
- 97%
- 99%
- H ~ 0.005
- H ~ 0.001

~550-600°C maximal peak broadening
the highest local (meV) proton motion

Elastic Incoherent Structure Factor (EISF)

- Normalized H⁺ EISF
- Jumps over n sites?
- residence time
- jump distance

Temperature (°C)

FWHM (meV) α to H dynamic contribution

T=600°C

BZ_3 4F1

BZ_6

Normalized H⁺ EISF

Q (1/A)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.7 0.8 0.9 1.0

Total EISF

Normalized H⁺ EISF

Q (1/A)

0.0 0.2 0.4 0.6 0.8 1.0

0.7 0.8 0.9 1.0
Proton dynamics - TOF results

500°C

- Intensity vs. Energy (meV)
- MSD vs. Temperature (°C)

~450-500°C maximal value of MSD, the highest (meV) proton motion

Mibemol vacuum

SZ 99%
H ~ 0.004

SZ 98%
H ~ 0.003
in situ Conductivity

High pressure/high temperature
Steam Water Electrolyser
(up to 600°C and 50 bars of H_2O)

AREVA NP, Montpellier FRANCE
http://www2.cnrs.fr/presse/comunique/1570.htm

E_a \sim 0.3 \text{ eV} \Rightarrow \text{Pure proton conduction below 565°C}