Proton Conducting ceramic Cells: Status and Prospects

M. Marrony
Project Manager in Fuel Cell
Outline

• Introduction

• Materials and processes

• Scale-up processes

• Performance and durability

• Conclusion and prospects
Outline

• Introduction
 – Research overview
 – Context & roadmap: case in fuel cell

• Materials and processes

• Scale-up processes

• Performance and reliability

• Conclusion and prospects
Introduction: PCC research in the literature...

- More and more interests...
 - Better understanding of proton diffusion phenomena through the material
 - Optimization of intrinsic properties of materials and cell manufacturing (mechanical strength, performances)
 - Diversity of applications
 - Fuel cell
 - Hydrogen pumping
 - Ammonia synthesis
 - Electrolysis

*source: science direct
Keyword: proton conducting ceramic fuel cell
Introduction: PCC research mapping*

- > 15 countries
- > 9 industrials
- >30 laboratories and Institutes

*List non exhaustive
Introduction: PCC in Fuel cell: Context & roadmap

- Assessment of PCFC technology as electrochemical devices vs. other FC technologies (SOFC, PEMFC)
 - Simplification of reforming step (vs. PEMFC)
 - (Potentially) use of common metallic materials (reduction of cost) (vs. SOFC)
 - (Potentially) better stability under dynamic/thermal cycles (vs. SOFC)
 - (Potentially) better energetic efficiency (no dilution of fuel @anode side) (vs. SOFC)
 - Better diffusion kinetics of H+ elements (vs. O2-)

- Opening market target: beginning 2020
 - Competition with LT SOFC technology
Outline

• Introduction

• Materials and processes
 – Criteria and status
 – Strategic approach
 – Nanopowder synthesis method

• Scaling-up

• Performance and reliability

• Conclusion and prospects
Materials and processes: the ideal PCC…

- Operating domain in PCFC research: 500 -700°C
 - >600°C: competition with IT-SOFC (2nd generation) and now LT-SOFC (3rd generation)
 - <600°C: non mature domain

<table>
<thead>
<tr>
<th>600°C</th>
<th>Anode</th>
<th>Electrolyte</th>
<th>Cathode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H₂/ H₂O</td>
<td>Air / H₂ / H₂O</td>
<td>Air / H₂O</td>
</tr>
<tr>
<td></td>
<td>H₂/ H₂O</td>
<td>H₂/ H₂O</td>
<td>H₂/ H₂O</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chemical stability</th>
<th>H₂/ H₂O</th>
<th>Air / H₂ / H₂O</th>
<th>Air / H₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂/CO tolerance</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Ionic/protonic conductivity</td>
<td>> 10⁻² S·cm⁻¹</td>
<td>> 10⁻² S·cm⁻¹</td>
<td>> 10⁻² S·cm⁻¹</td>
</tr>
<tr>
<td>Electronic conductivity</td>
<td>>1000 S·cm⁻¹</td>
<td>~ 0 S·cm⁻¹</td>
<td>>100 S·cm⁻¹</td>
</tr>
<tr>
<td>ASR</td>
<td>< 0.15 Ω·cm²</td>
<td>< 0.15 Ω·cm²</td>
<td>< 0.15 Ω·cm²</td>
</tr>
<tr>
<td>Catalytic activity</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Mechanical properties</td>
<td>Porous ~50% 300-800µm Thick</td>
<td>Dense >95% 10-30µm Thick</td>
<td>Porous ~30% 20-40µm Thick</td>
</tr>
<tr>
<td>Industrial aspects</td>
<td>Easy and not costly synthesis & manufacturing processes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electrolyte materials
- Perovskite type AMₓX₁₋ₓO₃₋δ
 - (with A=Ba, Sr, M=Ce, Zr, Ta et X=Y, Yb, In)
 -
 -
 - Other perovskites:
 - Ba (Ce₀.6 Y₀.3 Nb₀.1)O₃₋δ (BCNY)
 - La₆₋ₓWO₁₂₋₅ (LWO)
 - …

Anode materials
- Corresponding cermet (NiO-EI)

Cathode materials
- Commonly SOFC materials
 - LSM, LSCF, BSCF, Ln₂NiO₄
 - others:
 - Cobalt-containing perovskite-type materials
 - Sm₀.₅Sr₀.₅CoO₃₋δ
 - Ce₀.₈Sm₀.₂O₂₋δ (SSC – SDC) (Sun et al. 2011)
 - …
Materials and processes: strategic approach

• Starting point: Perovskite BCY based materials as electrolyte
 – Need of thin and dense electrolyte with high mechanical strength and high performance stability
 ➢ Reduction of electrolyte resistance
 ➢ Use of nanopowder to enhance
 – Ionic grain boundary conductivity
 – The gastightness
 ➢ Insertion of new doping elements (Zr, Zn...) (better CO2 tolerance, lower sintering temperature...)

• Need of optimal microstructure and composition of the porous electrode for:
 – A good catalyst activity
 – To match TEC of materials
 – To improve adhesion between components
 ➢ Use of Nanostructured electrode to get
 – High electro catalytic activity
 – Large TPB

Advanced MIEC cathodes

Composite approach

Optimization of intrinsic properties of baseline materials

Advanced electrolyte materials

Porous cathode structure

Porous anode structure

Multi layer anode cermet
Materials and processes: nanopowder synthesis

- **Flash Combustion method**
 - Effective method used for the production of more than 1000 fine complex oxide powders
 - A self-sustained reaction of metal nitrates and different fuels

- **Advantages**
 - The liquid state allows mixing the reactants on the molecular level permitting uniform formulation
 - The high reaction temperature ensures high product purity and crystallinity
 - Short process duration promotes synthesis of nano-size powders with high specific surface area

\[
\text{Nitrates} + \text{H}_2\text{O} + \text{Glycine} \\
\text{Dehydration } @ 200^\circ \text{C} \\
\text{Ignition/Combustion} @ 600^\circ \text{C}
\]

Outline

• Introduction

• Materials and processes

• **Scaling-up**
 – Powder synthesis: the first level of maturity system
 – Cell manufacturing: the second level of maturity system…

• Performance and reliability

• Conclusion and prospects
Scaling-up step 1: powder synthesis

- Validation of the up-scaling step for lab powder synthesis process:
 - Combustion and solid state reaction
 - Good quality and reproducibility (>1 kg)

<table>
<thead>
<tr>
<th>1st generation</th>
<th>2nd generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BaCe${0.9}$Y${0.1}$O$_{3-\delta}$ (BCY10)</td>
<td>Ba2(In${0.8}$Ti$_{0.2}$)2O${5.2-\delta}$ (BIT02)</td>
</tr>
<tr>
<td>NiO / BaCe${0.9}$Y${0.1}$O$_{3-\delta}$</td>
<td>NiO / Ba2(In${0.8}$Ti$_{0.2}$)2O${5.2-\delta}$</td>
</tr>
<tr>
<td>Pr2NiO${4+\delta}$</td>
<td>Ba(Ce${0.6}$Zr${0.1}$Y$_{0.1}$)3O${3-\delta}$ (BCZY)</td>
</tr>
<tr>
<td>NiO / Ba(Ce${0.6}$Zr${0.1}$Y$_{0.1}$)3O${3-\delta}$</td>
<td>NiO / Ba(Ce${0.6}$Zr${0.1}$Y$_{0.1}$)3O${3-\delta}$</td>
</tr>
</tbody>
</table>

Delivery of powders to the partners

Cell elaboration

Quality control OK
Scaling-up step 2: Anode Supported cell manufacturing (1)

- Target: elaboration of cells at industrial level (> φ 80 mm):
 - Easy and industrial methods
 - Low manufacturing cost
- Evaluation of co-pressing method for half-cells (commonly used in the literature)

- φ 25 mm 😊 → φ 40 mm 😊 → φ 80 mm 😞
 - Difficulty with feasibility & reproducibility for bigger cells
 - Co-pressing method can not be easily used for mass production
 - Introduction of wet chemical routes

Dailly J., Marrony M. et al, under manuscript
Scaling-up step 2: Anode Supported Cell manufacturing (2)

<table>
<thead>
<tr>
<th>Anode</th>
<th>Electrolyte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressing</td>
<td>Tape-casting, screen-printing, slip-casting</td>
</tr>
<tr>
<td>Tape-casting</td>
<td></td>
</tr>
</tbody>
</table>

Tape-casting

- NiO/BCY10

Screen-printing

- BCY10

Co-sintering

- 1400°C / 10h

Screen-printing (PrN, BSCF, $\text{Nd}_2\text{NiO}_{4+x}$)

- 1200°C / 1h

GENERATION 2: preliminary results

<table>
<thead>
<tr>
<th></th>
<th>Thickness</th>
<th>Porosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anode</td>
<td>430 µm</td>
<td>2% (cellForRowAt)</td>
</tr>
<tr>
<td>Electrolyte</td>
<td>25 µm</td>
<td>3% (Crescent)</td>
</tr>
<tr>
<td>Cathode</td>
<td>17 µm</td>
<td>30% (Smile)</td>
</tr>
</tbody>
</table>

SEM observations
- **Before reduction**:
 - Anode: 430 µm, 2% (EndElement)
 - Electrolyte: 25 µm, 3% (EndElement)
 - Cathode: 17 µm, 30% (EndElement)
Outline

• Introduction

• Materials and processes

• Scale-up processes

• Performance and durability

• Conclusion and prospects
Performance and reliability: status (1)

- Actual average cell performance:
 - 100 - 250 mW/cm²@600°C
 - Cell diameter below 10 mm
 - BCZY and BCY based cells
 - Many cathode/electrolyte couples

- Targeted cell Performances:
 - >400 mW/cm², 600°C
 - …LT-SOFC > 500 mW/cm², 600°C
Performance and reliability: status (2)

- **Cell Reliability target**
 - Few thousand hours under static mode (@0.7-0.8V)
 - >100 dynamic cycles

- **Lifetime tests in PCFC:**
 - No real data in the literature:
 - Few tens hours... @700°C!!!
Performance and durability: BCY10/PrN based cell

Cell performance and reliability improved
- 180 mW/cm², 600°C
- >250h

SEM/EDX analysis
- Electrolyte layer:
 - Porosity and quality improved
 - Thickness to be reduced (< 20 μm)
- Anode layer
 - Better homogenity
- Cathode Layer:
 - High reactivity PrN / BCY
 - Delamination effect

Dailly J., Marrony M. et al, under manuscript
Performance and durability: advanced substituted perovskite based cell

$\text{Ba(Ce}_{0.9}\text{Y}_{0.1})\text{O}_{3-d} \rightarrow \text{BCY10}$
$\text{Ba(Ce}_{0.8}\text{Zr}_{0.1}\text{Y}_{0.1})\text{O}_{3-d} \rightarrow \text{BCZY}$
$\text{Ba(Ce}_{0.6}\text{Y}_{0.3}\text{Nb}_{0.1})\text{O}_{3-d} \rightarrow \text{BCYN30}$

Influence of material electrolyte (NiO-electrolyte / electrolyte/BSCF) on cell performance

- Electrolyte based PCFC cell:
 - $\text{BCY} > \text{BCYN} > \text{BCZY}$

- $\text{P} = 125 \text{ mW/cm}^2, 600^\circ\text{C}$ without composite,
- $\text{P} = 200 \text{ mW/cm}^2, 600^\circ\text{C}$ with composite
 - Case of BSCF
Performance and reliability: BCY stable?

- Performance to be optimized
 - 1000h @0.8V without degradation! 😊
 - $P_{\text{max}} = 60 \text{ mW/cm}^2$ 😊
 - …but OCV > 1 V 😊, even after 1000h!

- SEM/EDX observations
 - No diffusion of elements through layers 😊
 - Slight increase of porosity of electrolyte 😊
 - Because power density is nearly constant with time, the properties of BCY is not the parameter key of degradation…
 - Cathode interface layer to be optimized (protective coating interface?)

<table>
<thead>
<tr>
<th>Thickness (μm)</th>
<th>Porosity After test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anode</td>
<td>430 2% → 18%</td>
</tr>
<tr>
<td>Electrolyte</td>
<td>25 3% → 10%</td>
</tr>
<tr>
<td>Cathode</td>
<td>17 30% → 25%</td>
</tr>
</tbody>
</table>

Dry H₂/air

600°C

1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

0
100
200
300
400
500
600
700
800
900
1000

$E (\text{Volts})$
Time (Hours)

$E (\text{Volts})$
$i (\text{A/cm}^2)$

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10

$\text{Power (W/cm}^2\text{)}$

$\text{IV curves of NiO-BCY/BCY/NdN cell vs. time (h)}$

Dailly J., Marrony M. et al, under manuscript
• Introduction

• Materials and processes

• Scale-up processes

• Performance and durability

• Conclusion and prospects
Conclusions

- Promising technology in fuel cell but not enough mature materials and processes used
 - Research activity growing up for the 10 last years

- Materials & processes
 - Validation of the scale up of material synthesis
 - Cell manufacturing to be improved
 - Wet chemical routes

- Cell Performances
 - Actually: ~200 mW/cm², 600°C
 - BCY based cell
 - In the literature: 350 mW/cm², 600°C
 - To be reached:
 - >400-500 mW/cm², 600°C...
 - ...vs. LT-SOFC > 500 mW/cm², 600°C

- Cell reliability
 - >1000h with BCY based cell without any degradation
Propects (1)

• In order to reduce technological bottlenecks...
 – Towards « Nafton® » or YSZ references
 ➢ Understanding of proton diffusion mechanisms through materials
 ➢ Innovative materials
 – Towards the best couple electrolyte/cathode
 ➢ Better compatibility (TEC, chemical reactivity…)
 – Composite system?
 – Towards the best microstructure
 ➢ Composition gradient
 ➢ Innovative materials: MIEC (H+/e) for both cathode and anode layers
 – Towards the best operating conditions
 ➢ Standard criteria
 ➢ Vs. Application profile
Prospects (2)

Opening to electrolysis @ intermediate temperature (500-700°C): energy storage via H2

- ☹ PO2 ↑ @ H2 side by shifting SOFC/SOEC modes
- ☺ PO2 ↑ @ O2 side by shifting PCFC/PCEC modes
 - High produced H2 quality
 - Better stability of material properties (Ni elements especially)
 - Reversibility concept more acceptable

- … but poor state of the art
 - 2-3 recent scientist articles
Acknowledgments and informations…

CONDOR team…

Financial supports…

More information on PCFC results: www.pcfc-condor.org
www.metprocell.eu

EVENT in 2013 in Montpellier (France) → 1st announcement come soon…

PROSPECTS PCC 2013 (n°2)
Proton Ceramics cells in applied research:
* Fuel cell
* Electrolysis
* Ammonia synthesis
* H2 pumping

Thank you for your attention!
Materials and processes: electrolytes (1)

- **Substituted Perovskites and derivates**
 - **Generation 1:**
 - \(\text{BaCe}_{0.9} \text{Y}_{0.1} \text{O}_{3-d} \) (BCY10)
 - BCY10: \(s(\text{H}^+) = 1-10 \text{ mS/cm}, 400-600^\circ \text{C} \)
 - \(\text{BaZr}_{0.9} \text{Y}_{0.1} \text{O}_{3-d} \) (BZY10)
 - **Generation 2:**
 - \(\text{Ba(Ce}_{0.6} \text{Y}_{0.3} \text{Nb}_{0.1})\text{O}_{3-d} \) (BCYN)
 - \(\text{BaCe}_{0.8} \text{Zr}_{0.1} \text{Y}_{0.1} \text{O}_{3-d} \) (BCZY)
 - \(\text{Ba}_2\text{In}_{2-x}\text{Ti}_x \text{O}_{5+d} \) (avec \(x=0.2 \)) (BIT02)

- **Nanopowdered approach**
 - High sinterability
 - High apparent density
 - Ex: BZY10: sintering temperature 200°C lower than those described in the literature (ref: 1700°C)

Conductivity measurements vs. \(T(\circ \text{C}) \) [Ar/H2, H2O 3%]

Sintering Temperature °C

- \(\text{BCY} \)
- \(\text{BZY} \)
- \(\text{BCZY} \)
- \(\text{BCYN} \)

Compacty %

- \(\text{BIT02} \)

Materials and processes: electrolytes (2)

4% CO₂/He 700°C/10h

- Substituted Perovskites
 - Reactivity ranking
 - BCYN30 > BCZY >> BCY
 - Powder level
 - Dense material: reactivity less pronounced
 » Kinetics effect

Materials and processes: anode cermet (1)

- Characteristics of the support
 - Mechanical strength
 - Gas permeability (~ 40 % porosity)
 - Total conductivity higher than 100 mS/cm

- Structuration of Functional layer
 - Fine microstructure, large TPB

- Control of microstructure (porosity) vs. synthesis methods
 - Flash combustion
 - Infiltration
 - Physical mixture
 - Gelling starch as porogen

Materials and processes: anode cermet (2)

- Pure Ni-BCY cermet after reduction @ 700°C

- Metallic behavior, percolation of the Ni phase
- $\sigma > 1000$ S/cm, @ 600°C attributed to high homogeneity

- EIS on symmetrical cell (anode/electrolyte/anode)
 - Low polarisation ASR ≈ 0.1 Ω cm² @ 600°C for any synthesis methods

Materials and processes: Cathode (1)

- Cathode materials
 - Water insertion abilities in oxides materials
 - 3 structural types

\[
A_xB_yO_2 + \frac{n}{2}H_2O \rightarrow A_xB_yO_{2-n\frac{1}{2}}(OH)_n
\]

Perovskites

\[A_{1-x}A'_xM_{1-x}M'_xO_3-\delta\]

- AO layer
- MO\(_2\) layer
- \(H_2O\) insertion
- Oxygen vacancies

- Ba\(_{0.5}\)Sr\(_{0.5}\)Co\(_{0.8}\)Fe\(_{0.2}\)O\(_{3-\delta}\)
- La\(_{0.6}\)Sr\(_{0.4}\)Fe\(_{0.8}\)Co\(_{0.2}\)O\(_{3-\delta}\)

Double Perovskites

- LnBaM\(_2\)O\(_{5+\delta}\)

- AO layer
- MO\(_2\) layer
- LnO\(_{0.5}\) layer
- \(H_2O\) insertion

- GdBaCo\(_2\)O\(_{5+\delta}\)
- NdBaCo\(_2\)O\(_{5+\delta}\)
- PrBaCo\(_2\)O\(_{5+\delta}\)

Ruddlesden-Popper

- Ln\(_2\)MO\(_{4+\delta}\)

- Oxygen vacant sites
- \(H_2O\) insertion
- Couche Ln\(_2O_2\)
- Couche MO\(_2\)

- La\(_2\)NiO\(_{4+\delta}\)
- Nd\(_2\)NiO\(_{4+\delta}\)
- Pr\(_2\)NiO\(_{4+\delta}\)

Materials and processes: Cathode (2)

- Electrochemical measurements
 - Symmetric electrode/electrolyte/electrode half cells
 - Preparation of dense BaCe$_{0.9}$Y$_{0.1}$O$_{3-d}$ electrolyte pellets
 - Electrode ink (particle size < 1 mm) screen printed
 - Electrode layer sintered between 1000 and 1200 °C
 - Electrode layers with controlled microstructure (thickness and porosity)

\[\eta \text{ cath (V / Pt)} \]

\[\log (I_{dc}) \]

\[\text{La}_{0.6}\text{Sr}_{0.4}\text{Fe}_{0.8}\text{Co}_{0.2}\text{O}_{3-d} \]

\[\text{Ba}_{0.5}\text{Sr}_{0.5}\text{Co}_{0.8}\text{Fe}_{0.2}\text{O}_{3-d} \]

\[\text{Pr}_2\text{NiO}_{4+\delta} \]

\[\text{PrBaCo}_2\text{O}_{5+\delta} \]

- BSCF (ASR ≈ 1Ω cm2 @ 600°C) appear as the most promising cathode materials for H$^+$-SOFC