ATOMIC SCALE PICTURE OF THE PROTON CONDUCTION MECHANISM IN THE TETRAHEDRAL NETWORK OF LA$_{1-x}$

$_x$BA$_{1+x}$GAO$_{4-x/2}$

Niina Jalarvo1,2
Olivier Gourdon1,2
Delphine Gout1,2
Zhonghe Bi2
Mariappan Paranthaman2
Michaela Zamponi1
Michael Ohl1,2

1 Juelich Centre for Neutron Science
2 Oak Ridge National Laboratory
$\text{LA}_{1-x}\text{BA}_{1+x}\text{GAO}_{4-x/2}$

- a system with tetrahedral (GaO_4) units
- increasing the barium content in expense of lanthanum content leads to oxygen vacancies for charge compensation.
- water can be incorporated into the oxygen vacancies as protonic defects from humid atmospheres
- exhibits oxide ion conduction in dry atmospheres, and proton conduction in humid atmospheres

- DFT and MD [1] suggest inter-tetrahedron proton transfer to be the rate limiting process

SAMPLE PREPARATION LA$_{0.8}$BA$_{1.2}$GAO$_{3.9}$ AND XRPD

- Syntheses at 1400 °C
- Refinements show unusual ADP for oxygen in the vicinity of the Ba
- Neutron diffraction essential to have accuracy on oxygen positions/occupations. X-ray not sensitive enough to have accurate results.
TG AND IMPEDANCE SPECTROSCOPY

- Hydration ratio
 \[\text{La}_{0.8}\text{Ba}_{1.2}\text{GaO}_{3.9}\times0.08\text{H}_2\text{O} \]

- Activation energy for proton conduction ca. 0.77 eV [2]

NPD OF $\text{La}_{0.8}\text{Ba}_{1.2}\text{GaO}_{3.9}$

TOF-NPD @ POWGEN (SNS) @ 300K using two different center wavelengths (CWLs)

- 1.066 Å (d-spacing from 0.29 Å to 3.09 Å) for accurate nuclear structure and ADPs
- 3.731 Å (d-spacing from 1.65 Å to 8.24 Å) additional nuclear reflections if further ordering occurs

Orthorhombic structure
Space group $\text{P}_{2\frac{1}{2}2\frac{1}{2}2\frac{1}{2}}$

$a = 10.078(5)$ Å
$b = 7.336(4)$ Å
$c = 5.936(4)$ Å

Oxygen vacancies are carried by $\frac{1}{4}$ of the sites and “travel” along the c axis direction. Locally Ga_2O_7 entities are created implying a rocking motion of two other oxygen atoms.
NPD OF LA$_{0.8}$BA$_{1.2}$GAO$_{3.9} \times 0.08$D$_2$O

The inclusion of D$_2$O shows an increase of the volume and some residues associated with D sites are observable along the path shown by dashed lines.

Oxygen from water is partially filling the vacancies.
Proton are traveling through the “rocking” oxygen atoms.
QENS MEASUREMENTS

• Proton diffusion in $\text{La}_{0.8}\text{Ba}_{1.2}\text{GaO}_{3.9}\times0.08\text{H}_2\text{O}$ measured @ BASIS backscattering spectrometer @ SNS
 • High energy resolution 3 μeV
 • Residence times measurable from 1 ps to 1 ns
 • Length scales measurable from 3 Å to 30 Å
TYPICAL QENS SPECTRA

\[S(Q, \omega) = p_1 \delta(\omega) + p_2 \frac{1}{\pi} \frac{\Delta(Q)}{\omega^2 + \Delta^2} + B \]
QENS SPECTRA

- QENS spectra were measured at various temperatures from 30 to 500 K.
- Hydrated sample measured to determined the atomic scale proton diffusion process
- Dry sample measured for comparison
- Data fitted with model containing two Lorentzian functions – each one associated with a particular dynamical process of the protons in the sample

Fit example at 466 K at 1.3 Å⁻¹
FAST LOCALIZED PROCESS

The width of the broad Lorentzian component is “constant” as a function of Q, indicating localized proton motion.

- Activation energy of 70 meV
- Corresponds to the literature value for the inter-tetrahedron proton transfer [1]

SLOW PROCESS

- The Q dependency of the HWHM of the narrow Lorentzian component indicates long range translational diffusion of protons
- Activation energy for translational diffusion of protons is 0.5 eV

<table>
<thead>
<tr>
<th>T (K)</th>
<th>D_t (10^{-8} cm^2/s)</th>
<th>D_t error</th>
<th>τ (10^{-8} s)</th>
<th>τ error</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>21.4</td>
<td>0.08599</td>
<td>0.0095</td>
<td></td>
</tr>
<tr>
<td>466</td>
<td>15</td>
<td>0.06455</td>
<td>0.03002</td>
<td></td>
</tr>
<tr>
<td>433</td>
<td>6.52842</td>
<td>0.18417</td>
<td>0.05479</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>1.92316</td>
<td>0.44956</td>
<td>0.03002</td>
<td></td>
</tr>
</tbody>
</table>

Diffusion coefficients and residence times for translational diffusion
CONCLUSIONS:

- Long range translational diffusion of protons over more than 3 unit cells was observed by QENS, $E_a = 0.5$ eV.

- Localized proton diffusion was observed, $E_a = 0.07$ eV.

- Deviation from the localized and translational diffusion was observed at $Q = 1.5 \, \text{Å}^{-1}$, indicating a faster process on a distance of about 4.2 Å.
ACKNOWLEDGEMENTS

Olivier Gourdon NPD
Delphine Gout synthesis & XRPD
Zhonghe Bi TGA
Mariappan Paranthaman discussions
Michaela Zamponi SPHERES measurements
Ken Herwig discussions
Michael Ohl discussions

Beamtime:
SNS
FRM2