Phosphonated & sulfonated poly(pentafluorostyrene)

Vladimir Atanasov & Jochen Kerres

Institute of Chemical Process Engineering
University of Stuttgart, Germany

![Chemical structures](image-url)
• Phosphonated poly(pentafluorostyrene) (PWN2010)
 • Synthesis & Characterization
 • Conductivity (EIS)
 • Structure (SAXS)
 • Anhydride formation (phosphonic acid condensation)
 • Resistance to radical attack (Fentons test)

• Emulsion polymerization of pentafluorostyrene
 • Molecular weight (GPC)

• Sulfonated poly(pentafluorostyrene) (sPFS)
 • Synthesis & Characterization
 • Resistance to heat (TGA)
 • Hydration isotherms (water uptake)
 • Conductivity (EIS)
Phosphonation of PFS

\[
\begin{align*}
\text{PFS} & \quad (\text{commercial}) \\
\text{Characteristics:} & \\
\text{• phosphonation above } & 90 \% \\
\text{• molecular weight } M_w & = 67 \text{ kDa} \quad (M_w \text{ (PFS)} = 59 \text{ kDa}) \\
\text{• IEC} & = 7 \text{ mmol g}^{-1} \quad (\text{calc. } 7.8 \text{ mmol g}^{-1}) \\
\text{• } pK_a & = 0.5 \quad (\text{Polystyrene-PO}_3\text{H}_2: \quad pK_a = 1.9) \\
\text{• resistance to heat up to } & 340 \ ^\circ \text{C} \\
\text{• } T_g & \text{ above } 340 \ ^\circ \text{C}
\end{align*}
\]

Yield: 98%
water soluble powder

Atanasov & Kerres *Macromolecules* 2011, 44, 6416
* H. Steininger *Phys. Chem. Chem. Phys.*, 2007, 9, 1764
SAXS

Intensity (a.u.)

q (Å⁻¹)

q0 = 0.27 Å⁻¹

q1 = 0.557 Å⁻¹

PWN 2010, 84% RH

N117 Ambient RH

d = 2p/q = 23 Å
31P solid-state NMR

Drying: 50 °C, p = 1 mbar, a week

Observing: Single resonance

Reason: free phosphonic function

Conclusion:

Inability of PWN2010 to undergo self-condensation at 50 °C

Annealing: 250 °C, p = 1 atm, 5 hrs

Observing: Shoulder in the main resonance

Reason: formation of new phosphorous species

Conclusion:

PWN2010 formed anhydride at 250 °C (confirmed by FTIR)
Integration:
acid : anhydride = 58 : 42

Experimental spectrum of PWN annealed at 250 °C

PVPA

Anhydride > 90%

difference

acid form

anhydride form

<table>
<thead>
<tr>
<th>PWN</th>
<th>Weightloss [wt%]</th>
<th>M_w / kDa</th>
<th>PDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before FT</td>
<td>-</td>
<td>67</td>
<td>7.4</td>
</tr>
<tr>
<td>After 24h FT</td>
<td>0</td>
<td>137</td>
<td>3.2</td>
</tr>
<tr>
<td>After 48h FT</td>
<td>0</td>
<td>106</td>
<td>2.8</td>
</tr>
<tr>
<td>After 96h FT</td>
<td>2</td>
<td>105</td>
<td>2.8</td>
</tr>
</tbody>
</table>

Fenton test of PWN2010

PWN after 24, 48 and 96h Fenton test

PWN before Fenton test

Molecular weight (g mol$^{-1}$)
Emulsion polymerization of PFS

- Initiator: \(\text{K}_2\text{S}_2\text{O}_8 \)
- M/H\(_2\text{O} \) = 1/2
- M/SDS = 50/1
- Temperature: \(T = 80 \rightarrow 94 \degree \text{C} \) for 1 h
- React. Time: 2 h

<table>
<thead>
<tr>
<th>Name</th>
<th>(M_n) calc kDa</th>
<th>(M_n) exp kDa</th>
<th>(M_w) exp kDa</th>
<th>PDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFS*</td>
<td>-</td>
<td>25</td>
<td>105</td>
<td>4.2</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>312</td>
<td>716</td>
<td>2.3</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>260</td>
<td>780</td>
<td>3.0</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>140</td>
<td>440</td>
<td>3.1</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>110</td>
<td>295</td>
<td>2.7</td>
</tr>
</tbody>
</table>

*commercial
Characteristics:

• sulfonation 100 %
• IEC = 3.4 mmol g⁻¹ (calc. 3.9 mmol g⁻¹)
• pKₐ = - 2 (PSSA: pKₐ = - 0.5)
• resistance to heat up to 270 °C
• molecular weight is unknown: sPFS is partially soluble only in DMSO
Temperature / °C

<table>
<thead>
<tr>
<th>Polymer</th>
<th>Defuncional. [°C]</th>
<th>Degradation [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PαMSSA</td>
<td>201</td>
<td>381</td>
</tr>
<tr>
<td>PSSA</td>
<td>247</td>
<td>382</td>
</tr>
<tr>
<td>sPFS</td>
<td>268</td>
<td>351</td>
</tr>
<tr>
<td>tPFS</td>
<td>325</td>
<td>478</td>
</tr>
<tr>
<td>PFS</td>
<td>-</td>
<td>402</td>
</tr>
<tr>
<td>PWN 2010</td>
<td>340</td>
<td>391</td>
</tr>
</tbody>
</table>
The absolute higher water uptake of sPFS and PWN2010 is due to its higher number of functional group in compare to Nafion117.
Conductivity at 1 atm water pressure

Temperature (°C)

Conductivity (S cm⁻¹)

160
140
120
100

1

0,1

0,1

0,01

0,01

0,001

2,25

2,95

2,45

2,55

2,65

1000/T (K⁻¹)

sPSO₂-220

sPFS

Nafion117

PWN2010
Phosphonated poly(pentafluorostyrene) with phosphonation degree above 90% is obtained

- The high conductivity ($\sigma = 0.1 \ \text{S cm}^{-1}$ at 110 °C):
- Lamellar structuring (SAXS).
- The reduced formation of anhydrides (31P MAS NMR)
- Resistance to radical attack.

Poly(pentafluorostyrene) was obtained by emulsion polymerization

- Molecular weight (GPC): up to 800 kDa
- Control over molecular weight

Sulfonated poly(pentafluorostyrene) is obtained with 100% sulfonation degree.

- Ion conductivity ($\sigma = 50 \ \text{mS cm}^{-1}$ at 150 °C) is making this material one of the best ion-conducting polymer.
Acknowledgments

Jochen Kerres Katica Krajnovic
Karin Aniol Imre Hajdók
Corina Seyb Till Kaz
Andreas Chromik Inna Kharitonova
Anika Katzfuß Gallina Schumski

Sandrine Lyonnard (CEA, Grenoble)
Dietrich Gudat (University of Stuttgart)
Wolfgang Meyer (MPI-P, Mainz)
Klaus-Dieter Kreuer (MPI-FKF, Stuttgart)
Bastian Ruffmann (HIAT, Schwerin)

Deutsche Forschungsgesellschaft (DFG)

Thank you!